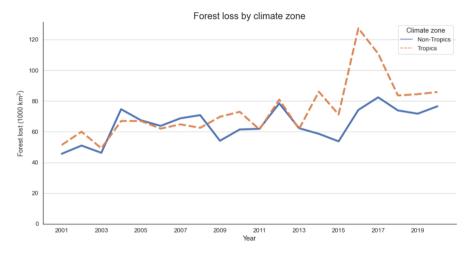
Tropical Deforestation

Robin Burgess Allan Hsiao

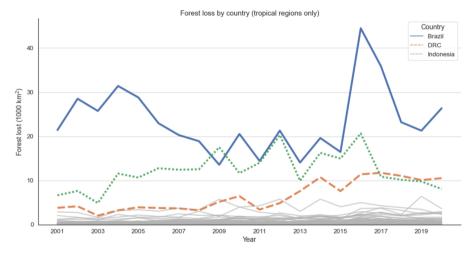
Coase Project Conference December 8, 2022

Why we care


- Climate change
 - Direct carbon emissions
 - Loss of carbon sinks
- 2 Measurement revolution
 - Satellite imagery (Donaldson & Storeygard 2016)
 - Empirics (Deschenes & Meng 2018)

Global emissions, 1990-2019 (Gt/yr CO₂)

Country	Total	Forest	Country	Total	Forest
China	7.07	-0.44	Brazil	1.71	0.85
USA	5.92	-0.38	Indonesia	1.44	0.73
EU	3.69	-0.33	DRC	0.50	0.46


Data: Climate Watch

Tropical deforestation, 2001-2020

Data: Hansen Global Forest Change

Tropical deforesters, 2001-2020

Data: Hansen Global Forest Change

Emissions vs. production, 1990-2019 (\$1T)

Country	Deforestation emissions	Agricultural value	
Brazil	2.55	1.68	
Indonesia	2.19	2.54	
DRC	1.39	0.16	

Data: Climate Watch, World Bank (\$100/t SCC, agriculture/forestry/fishing value added)

Large, global externalities

- Land use change is 14% of CO₂ emissions (Global Carbon Budget 2019)
 - Land use change is 1.5 ± 0.7 Gt/yr (2009-2018)
 - Fossil fuels are $9.5\pm0.5~{
 m Gt/yr}$
- Carbon targets relative to 2010 levels (IPCC 2018)
 - 2°C: 25% decline by 2030, net zero by 2070
 - 1.5°C: 45% decline by 2030, net zero by 2050

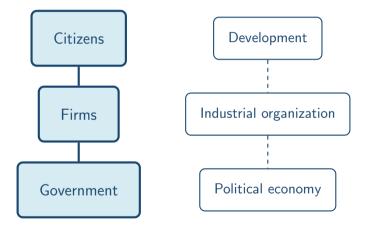
Measurement revolution

- Rich satellite data capturing deforestation
 - Over time and space
 - Including vegetation type and density
- For researchers
 - Within-country studies (not just cross-country)
 - Better measurement of externalities
- For regulators
 - Real-time monitoring technology
 - Including for global agencies

Indonesia

[Hsiao 2022, Hansen et al. 2013]

Outline


What we know

What is missing

O What to do

What we know

An extraction equilibrium

Economic development drives deforestation

- Land use change for agriculture
 - Rather than for extracting resources like timber and minerals
 - Recurring revenue from exporting to world markets

[Roberts & Schlenker 2013, Scott 2013, Costinot et al. 2016, Sotelo 2020]

- Importance of poverty reduction
 - Industrial policy targeting agricultural production
 - Assets for individuals during lean times

[Jack & Jayachandran 2017, Jayachandran et al. 2017, Edwards 2019, Edwards et al. 2020, Jack et al. 2022]

Industrial organization and firm incentives affect regulation

- Industrial agricultural by large firms
 - Rather than small-scale production by individuals
 - Market structure determines profits of farmers vs. processors

[Bergquist & Dinerstein 2020, Chatterjee 2022, Dhingra & Tenreyro 2022, Domínguez-Iino 2022, Méndez & Van Patten 2022, Rubens 2022, Zavala 2022]

- Firm behavior matters for the impacts of regulation
 - Want detailed firm-level modeling and microdata
 - Discrete choice over deforestation activities
 - Estimated elasticities differ with static vs. dynamic estimation

[Scott 2013, Souza-Rodrigues 2019, Assunção et al. 2021, Araujo et al. 2022, Hsiao 2022]

Political economy constrains regulation

- Winners vs. losers + implications for regulation
 - Local benefits, but global costs
 - Local voters, firms, and governments are aligned
 - Need transfers to address distributional effects

[Harstad 2012/2016, Harstad & Mideksa 2017, Harstad 2022]

- Infeasibility of first-best regulation
 - Corruption, electoral incentives, administrative constraints
 - Ill-defined property rights complicate Coasian bargaining

[Burgess et al. 2012, Balboni et al. 2021, Morjaria 2021, Dahis & Bragança 2022]

Trade policy can implement regulation

• Environmental regulation by trade policy

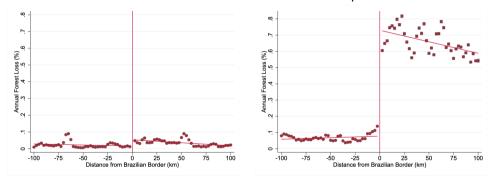
- Direct regulation faces issues of sovereignty
- Indirect regulation sidesteps local government

[Copeland & Taylor 1994, Antweiler et al. 2001, Kortum & Weisbach 2017, Shapiro 2021, Harstad 2022, Hsiao 2022]

International coordination for international problem

Climate clubs to incentivize participation

[Nordhaus 2015, Böhringer et al. 2016, Farrokhi & Lashkaripour 2021]

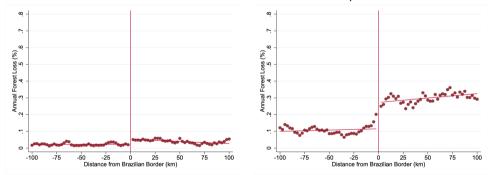


Brazilian forest loss

2001-2005

Protected areas

Non-protected areas

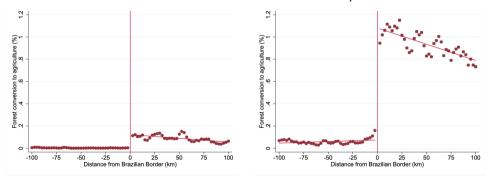


Brazilian forest loss

2006-2013

Protected areas

Non-protected areas

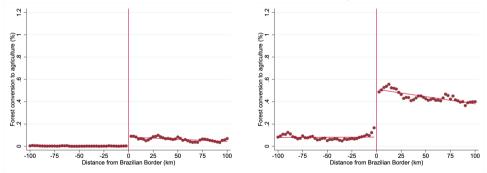


Brazilian agriculture

2001-2005

Protected areas

Non-protected areas



Brazilian agriculture

2006-2013

Protected areas

Non-protected areas

What is missing

Development

- Weak local institutions
 - Property rights, corruption, and administrative capacity
- Agricultural industrial policy
 - Transition to non-resource-based economy, funded by forest
 - Urbanization, migration, and spatial path dependence in GE

- Missing data: Who is cutting?
 - Firm boundaries, customers, legality, revenues, and costs
 - Incentives for firms to monitor supply chains
- Market structure
 - More on intermediaries, but less on global supply chains

Political economy

- Political incentives
 - Regulatory resistance with votes, lobbying, and bribes
 - Political rotation generates dynamics
- Politically feasible regulation
 - Winners vs. losers, sticks vs. carrots, national vs. local

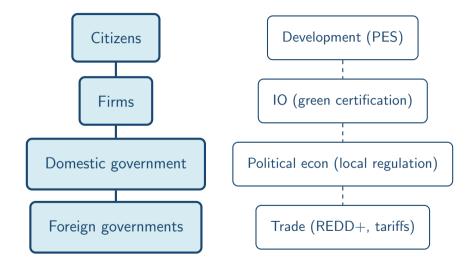
Trade

- Gains from trade
 - Offset/carbon markets, climate finance, and REDD+
- Regulation via trade
 - Trade policy, climate clubs, and border adjustment taxes

Other

- New data and models from science
 - Agronomy and land use change
 - Ecology and biodiversity
 - Hydrology and tipping toward desertification
 - Aerodynamics and particulates from burning
- New regions of focus
 - Congo, Papua, central Amazon

Democratic Republic of the Congo


[Hansen et al. 2013]

Congo rainforest

- Second largest in the world
 - Absorbs 4% of global CO₂ emissions annually
- Congo Basin
 - Six countries and 75 million people
 - Deforestation from small-scale, illegal charcoal and mining

What to do

Moving toward a conservation equilibrium

Existing policies

- Local
 - Quantity regulation: protected regions, moratoria, quotas
 - Satellite monitoring
- Global
 - Paying landowners (PES)
 - Paying governments (REDD+)
 - Targeting demand (import tariffs, green certification)
- Have these policies worked?
 - What have they taught us?

New policies

- Scaling up
 - PES works individually, but may not at scale
 - Challenges of attribution, enforcement, and cost
- Price regulation
 - Direct taxation vs. carbon markets
 - Accounting for emissions heterogeneity
- Can we propose new classes of policies?
 - And evaluate them empirically?

We need a big push

- In economics
 - Taking seriously development and political economy concerns
 - Drawing on frontier methods from IO and trade
- In policy
 - · Coordinated international action for an international problem
 - · Compensation for domestic actors and building enforcement capacity